Blow-up solutions appearing in the vorticity dynamics with linear strain
نویسندگان
چکیده
We consider a model equation for 3D vorticity dynamics of incompressible viscous fluid proposed by K. Ohkitani and the second author of the present paper. We prove that a solution blows up in finite time if the L1-norm of the initial vorticity is greater than the viscosity.
منابع مشابه
Blow-up Problems Modeled from the Strain-vorticity Dynamics
Model equations are derived from what we call the strain-vorticity dynamics of the incompressible viscous uid motion. The global existence and blow-up are examined for them and we see that the L 1 norm of the vorticity plays an important role. Blow-up solutions are obtained as self-similar solutions.
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملRemarks on the blow-up criterion of the 3D Euler equations
In this note we prove that the finite time blow-up of classical solutions of the 3-D homogeneous incompressible Euler equations is controlled by the Besov space, Ḃ0 ∞,1, norm of the two components of the vorticity. For the axisymmetric flows with swirl we deduce that the blow-up of solution is controlled by the same Besov space norm of the angular component of the vorticity. For the proof of th...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملExistence theorem and blow-up criterion of the strong solutions to the Magneto-micropolar fluid equations
In this paper we study the magneto-micropolar fluid equations in R, prove the existence of the strong solution with initial data in H(R) for s > 3 2 , and set up its blow-up criterion. The tool we mainly use is Littlewood-Paley decomposition, by which we obtain a Beale-Kato-Majda type blow-up criterion for smooth solution (u, ω, b) which relies on the vorticity of velocity ∇× u only.
متن کامل